RAPID AND RELIABLE REAL-TIME PCR WORKFLOW FOR DETECTION OF AFRICAN SWINE FEVER VIRUS

Claudia DÎRLĂ^{1,2*}, Mihai TURCITU², Maria Rodica GURĂU¹, Fănel OȚELEA³, Marius Andrei MĂNESCU⁴, Doina DANES¹

¹University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 5th District, 050097, Bucharest, Romania
 ²Omnivet Impex SRL, 5 Chimirului Street, District 5, Bucharest, Romania
 ³Romanian College of Veterinarians, 344 Galati Street, Braila, Braila County, Romania
 ⁴DSVSA Dambovita, 35 Ion Constantin Bratianu Blvd, Târgoviste, Dambovita County, Romania

*Corresponding author email: claudia darla@yahoo.com

Abstract

ASF is a fatal haemorrhagic disease affecting pigs, posing a significant threat to global agriculture as it rapidly spreads across the UE, Asia, and Oceania. Due to the lack of a vaccine or treatment, each outbreak requires pursuit of stringent biosecurity measures and trade restrictions. The disease's emergence is causing significant economic losses due to the stamping out of pig holdings in the affected areas and the pursuit of disease control measures, including trade restrictions to avoid disease spread. Since the onset of the ASF, Romania has been severely affected economically and socially, suffering losses in commercial and backyard farms, unemployment among workers in the pig breeding and meat processing industries, and significant expenditure on disease control and surveillance. ASF remains a major threat with no available vaccine and challenging eradication. Rapid, sensitive diagnostics are crucial. The proposed workflow offers multiple advantages, including the ability to verify extraction, amplification efficiency for each sample through amplification of two internal control systems, ensuring accurate pathogen detection regardless of nucleic acid type presence, and confirming sample cellularity to validate result accuracy and prevent false negatives due to inadequate collection, transport, or storage.

Key words: ASF, ASFV, cellularity, diagnosis, Real-Time PCR.

INTRODUCTION

African swine fever (ASF) is a viral disease exclusively affecting domestic and wild pigs. Clinically, it involves a haemorrhagic syndrome; it is quite contagious and has a lethal course in most cases (Sauter-Louis et al., 2021). The emergence of the disease is causing significant economic losses due to the stamping-out procedures in the affected areas, the implementation of disease control measures and the trade restrictions to prevent the spread of the disease (Saatkamp et al., 2000).

African Swine Fever (ASF) through various transmission cycles involving different hosts, such as domestic pigs, wild boar, wild African swine, and possibly other species. The epidemiology of ASF varies significantly between Africa and Europe due to differing environmental factors, with ticks playing a key role in the virus's transmission (Sánchez-Vizcaíno et al., 2015). In regions where these

ticks are found, increased surveillance and comprehension of the interactions among different hosts are essential for creating effective control and eradication strategies (Costard et al., 2013).

While the African Swine Fever virus (ASFV) represents a significant threat to livestock, it does not pose a risk to human health (Sánchez-Vizcaíno et al., 2009).

This distinction is important for shaping public health policies. Nevertheless, ASFV is contagious among pigs, requiring strict biosecurity protocols veterinary in environments. A comprehensive understanding of ASF's epidemiology, including its routes of transmission and the roles of various hosts and vectors, is crucial for effectively managing outbreaks and safeguarding pig populations worldwide through targeted research and surveillance initiatives.

The only way to stop the spread of the virus is to slaughter and destroy all pigs on infected

holdings, followed by rigorous disinfection and restrictions on animal movements and trade in the affected area (Busch et al., 2021).

The African swine fever virus was originally grouped within the Iridoviridae family but has since been reclassified into the Asfivirus genus of the Asfarviridae family. While unclassified viruses such as faustoviruses, kaumoebavirus, and Pacmanyirus possess about 30 genes similar to those found in the African swine fever virus, their genomes are substantially larger approximately 400 kilobase pairs compared to the 170-194 kilobase pairs of the African swine fever virus (Alonso et al., 2018). It is much more resistant and environmentally stable than the classical swine fever virus. This virus can cause extremely high mortality and affects pigs of all ages. Due to the lack of a safe effective vaccine and the common presence of infected wild boars in particular areas, the only method to control the disease is strict biosecurity measures allied to international cooperation on this matter. Knowledge and epidemiological understanding of how the virus may be introduced into susceptible populations of pigs is crucial to provide awareness to prevent the outbreaks and detect and control them immediately and appropriately when they do occur (Mazur-Panasiuk et al., 2019).

Since the onset of the ASF outbreak, Romania has been severely affected economically and socially, suffering losses in commercial and backyard farms, unemployment among workers in the pig and meat processing industries, and significant expenditure on disease control and surveillance.

The correct diagnosis of ASF should include detection of the virus genome or antigen in pig samples and/or the demonstration of a specific antibody response. Those techniques offer high specificity and sensitivity, making it both rapid and suitable for large-scale applications. Among them, PCR is capable of analysing any type of clinical specimen, achieving near-perfect accuracy with almost 100% specificity and sensitivity. PCR is particularly advantageous when working with decomposed tissues, where other methods may falter. It also serves as a valuable tool for analysing Ornithodoros soft ticks, which are vectors for several pathogens. The multiplex assay feature enables the simultaneous and differential detection of multiple pathogens, streamlining the diagnostic process. Notably, PCR does not require direct handling of live viruses, though biosecurity precautions are essential until any suspected samples are properly inactivated to ensure safe handling. Additionally, robustness decreases in samples with weak positive results (World Organisation for Animal Health, 2019). Given the similar symptoms of ASF, classical swine fever (CSF), and porcine dermatitis and nephropathy syndrome (PDNS), this method is crucial for swift and reliable diagnosis. enhancing existing molecular diagnostics for identifying ASF in suspected cases (King et al., 2003). A fully validated PCR test with high sensitivity and specificity will detect pigs with low viremia levels, including during early and late infection stages or with attenuated virus strains (Fernández-Pinero et al., 2013). The purpose of this paper is to describe a sensitive and robust workflow for ASF genome detection from various samples, with stringent validation and quality monitoring of the results.

MATERIALS AND METHODS

For this kind of extraction, it is preferred to use 2ml round-bottom tubes (U-shaped bottom) for easy resuspension of magnetic particles and to avoid sedimentation (Potop et al., 2014). Also, for certain sample types, a pretreatment is necessary in order to bring the nucleic acids into solution and make it available for binding to magnetic particles, as described in Table 1.

Table 1. Pre-treatment of dry tissues and pads

Step	Action	Description	Observation	
Tissue	Primary lysis	In 2 mL tubes will be pipetting the next reagents in the next order: Approx. 20 mg biological sample 20 µL Proteinase K 300 µL Reagent E0	Incubate at 56°C with occasional shaking or homogenisation by inversion until complete dissolution of the tissue.	
Dry swabs	Resuspension biological material	Insert buffer in the tube Pipette 500 µL saline into each tube.	Sectioning the buffer rod so that what remains does not go beyond the edge of the tube Energetic vortexing. Spin for liquid collection	

Table 2. Nucleic acid extraction

Step	Action	Description	Observation			
Step 1	Lysis of biological samples Nucleic acids binding	In a 2 mL tube pipette the following reagents in the order below: - 20 µL Proteinase K - 200 µL biological sample - 100 µl Reagent E1 - 400 µl Reagent E2 - 20 µl Reagent E3	Homogenisation by pipetting after sample transfer Reagent E1 has a high viscosity, wait 2 seconds after the pipette plunger release			
Incu		cer at minimum 1200 rpm				
Tubes	temperature 25°C. Spin centrifugation at the end Tubes insertion in the magnetic stand so that they can be opened towards the operator					
	e, gradually up	erting the pipette tip on the to the bottom of the tube time set for the pipette arc	e, with total liquid			
101		Pipette 600 µL Reagent E4 Incubation on shaker at minimum 1200 rpm for 5 minutes, room temperature	Spin centrifugation at the end			
Step 2	Nucleic acid wash	Tubes insertion in the magnetic stand	positioned so that they can open towards the operator			
		4. Liquid removal	Insert the pipette tip on the opposite side of the pipette, gradually until the bottom of the tube, with total removal of the liquid (volume set for the pipette around 800 µL)			
	Step 3 Nucleic acid wash	Pipette 600 µl Reagent E5 Incubation on shaker at minimum 1200 rpm for 5 minutes, room temperature	Spin centrifugation at the end			
Step 3		Tubes insertion in the magnetic stand	The tubes are positioned so that they can open towards the operator			
		4. Liquid removal	Insert the pipette tip on the opposite side of the pipette, gradually until the bottom of the tube, with total removal of the liquid (volume set for the pipette around 800 µL)			
Step 4	Nucleic acid wash	Pipetting 600 µL Reagent E6 Incubation on shaker at minimum 1200 rpm for 5 minutes, room temperature Tubes insertion in the magnetic stand	Spin centrifugation at the end The tubes are positioned so that			

			towards the operator.
		4. Liquid removal	Insert the pipette tip on the opposite side of the pipette, gradually until the bottom of the tube, with total removal of the liquid (volume set for the pipette around 800 µL)
	Step 5 Magnetic particle drying	1. Tubes insertion on thermoblock, 5 minutes at 55°C	Tube caps open!
Step 5		2. Tubes insertion in the magnetic stand	The tubes are positioned so that they can open towards the operator.
		1. Pipetting 90 μL Reagent E7	Tube caps closure!
Step 6	Nucleic acid elution	2. Incubation on shaker at minimum 1200 rpm for 5 minutes, room temperature	Stir gently before to resuspend the particles in E7 reagent Spin centrifugation at the end.
		3. Tubes insertion in the magnetic stand	The tubes are positioned with the opening towards the operator
		4. Transfer 80 μl liquid in a new tube	Keep refrigerated for up to one hour or in the freezer until analysed

Pathogen nucleic acid extraction was performed as described previously (Turcitu, 2024), with a custom protocol based on Qiagen chemistry and using magnetic beads for nucleic acids manipulation. Briefly, 0.2 mL of sample was incubated at 56°C with constant shaking along with 20 μ L of Proteinase K and lysis buffer, then washed and eluted in 100 μ L nuclease-free buffer. Eluates were stored at -80°C until amplification (Table 2).

Amplification/detection was performed using the QuantiNova Pathogen + IC kit (Qiagen, Hilden, Germany), specially designed for pathogen detection, as the name implies, with the internal exogenous control assay provided for inhibition monitoring and a supplementary assay for cellularity evaluation (mammal housekeeping gene). Primers and probe for ASFV were synthesised according to previous recommendations (King et al., 2003). Pathogen assay was marked with FAM fluorophore, exogenous internal control assay was marked with HEX-like fluorophore, and endogenous internal control assay was marked with Cy5 fluorophore; therefore, a triplex protocol was used (Turcitu, 2024). All components were

added according to the manufacturer's recommendations regarding final concentrations. Experiments were conducted on the Q instrument (Quantabio, Beverly, USA).

RESULTS AND DISCUSSIONS

To better evaluate the performance of the designed workflow, serial ten-fold dilution of the original sample was made. Amplification protocol was performed using a singleplex approach (only the pathogen assay was added to the MasterMix) and a triplex approach (all three assays were added to the MasterMix). All reactions were performed simultaneously in replicates, and the results are shown in Figures 3. Results interpretations automatically generated using Real Time instrument software features for reaction efficiency and R² coefficient calculation (Tables 3 to 5)

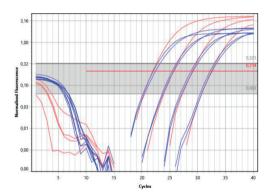


Figure 1. Amplification curves obtained for single-plex assays (red) and multiplex assays (blue) on serial tenfold dilution of ASF-DNA

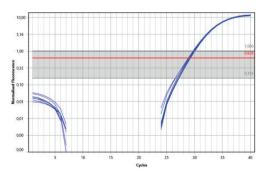


Figure 2. Amplification curves obtained for inhibition (exogenous internal control) assay Signal amplification on the same Ct, showing no inhibitors interference

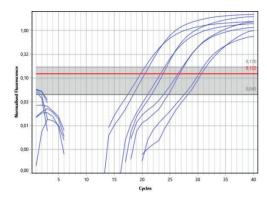


Figure 3. Amplification curves obtained for cellularity evaluation (endogenous internal control) assay on serial ten-fold dilution

Table 3. Results obtained for ASFV target (Green/FAM channel)

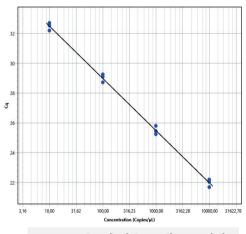

Cq	Efficiency	\mathbb{R}^2	Result	
PPA -1		X	=22.10 б=0.20	
21.91	1.04	0.99714		
22.02	0.87	0.99663		
22.38	0.80	0.99735		
PPA -2				
25.60	0.98	0.99900		
25.36	0.88	0.99727		
25.66	0.83	0.99708		
PPA-3				
29.06	0.93	0.99927		
28.78	0.82	0.99853		
29.13	0.78	0.99794		
PPA-4 x=32.37 σ=0.14				
32.41	0.93	0.99875		
32.18	0.90	0.99570		
32.51	0.84	0.99686		

Table 4. Results obtained for inhibition control (Yellow/HEX channel)

Cq	Efficiency	R ²	Result
PPA -1		X=2	28.91 σ =0.08
28.98	0.76	0.99992	
28.83	0.82	0.99952	
PPA -2			
29.06	0.88	0.99922	
28.97	0.91	0.99914	
PPA-3 x=28.98 6 =0.16			
29.15	0.93	0.99917	
29.13	0.93	0.99904	
PPA-4 $x=29.20 \text{s} = 0.03$			
29.18	0.93	0.99916	
29.23	0.92	0.99929	

Table 5. Results obtained for cellularity (Red/Cy5
channel)

Cq	Efficiency	\mathbb{R}^2	Result	
PPA cellularity -1				
20.42	0.62	0.99991		
19.68	0.54	0.99988		
PPA cellularity -2 $x=23.47 6=0.23$				
23.70	0.64	0.99881		
23.24	0.56	0.99992		
PPA cellularity-3 $x=26.53 6=0.165$			3 в=0.165	
26.67	0.64	0.99964		
26.38	0.48	0.99909		
PPA cellularity -4 $x=30.36 6=0.22$				
30.58	0.54	0.99868		
30.14	0.48	0.99661		

Standard Curve Characteristics

Equation: y = -3,503 x + 35,98

Export...

Figure 4. Standard curve for ASFV serial ten-fold dilutions

Efficiency: 0,9296 R2: 0,9967

Results obtained show a good workflow efficiency in terms of removal of sample inhibitors during extraction. as stated by the endogenous internal control amplification curves (Figure 2 - simultaneous amplification of the analysed samples, regardless of ASFV viral load) and Ct results (Figure 4 - comparable values for all samples/dilutions, minimal standard deviation). Moreover, nucleic acid recovery during extraction proved to be adequate for high. medium and low sample viral loads. as stated by the standard curve parameters (slope value -3.5. R² coefficient value above 0.99) and replicate values obtained (minimal

standard deviation for target as well as cellularity). Besides extraction efficiency. amplification showed a robust pattern. with serial dilution being amplified simultaneously for each dilution and replicate (Figure 1) and standard deviation within accepted range (Figure 4). Moreover, no significant differences were observed when comparing singleplex amplification versus triplex amplification – for dilution/replicate. the increase fluorescence starts simultaneously (Figure 1), and the Ct values obtained are comparable (Figure 4): therefore, no loss of sensitivity was observed.

CONCLUSIONS

The workflow described proved to fulfil the requirements for a good, reliable and fast tool for ASF nucleic acid detection. being able to cover all the biological material that can be received for diagnostic and surveillance of the virus. Moreover, by including stringent validation criteria for the obtained results it can give valuable information regarding sample collection, storage and transportation, along with the possibility to detect any inadvertence that might arise during sample processing and nucleic acid detection/amplification.

REFERENCES

Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano, J. M. & ICTV Report Consortium (2018). ICTV virus taxonomy profile: Asfarviridae. The Journal of General Virology. 99(5). 613–614. doi:10.1099/jgv.0.001049.

Busch, F., Haumont, C., Penrith, M. L., Laddomada, A., Dietze, K., Globig, A., Guberti, V., Zani, L., Depner, K. (2021). Evidence-based African swine fever policies: Do we address virus and host adequately? Frontiers in veterinary science. 8. 637487. doi:10.3389/fvets.2021.637487.

Fernández-Pinero, J., Gallardo, C., Elizalde, M., Robles, A., Gómez, C., Bishop, R., Heath, L., Couacy-Hymann, E., Fasina, F. O., Pelayo, V., Soler, A., Arias, M. (2013). Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library. *Transboundary and Emerging Diseases*. 60(1). 48–58. doi:10.1111/j.1865-1682.2012.01317.x.

King, D. P., Reid, S. M., Hutchings, G. H., Grierson, S. S., Wilkinson, P. J., Dixon, L. K., Bastos, A. D., Drew.
T. W. (2003). Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. *Journal of Virological*

- *Methods.* 107(1). 53–61. doi:10.1016/s0166-0934(02)00189-1.
- Ladoşi, I., Păpuc, T., Ladoşi, D. (2023). The impact of African swine fever (ASF) on Romanian pig meat production: A review. *Acta Veterinaria*. 73(1) 1-12. doi:10.2478/acve-2023-0001.
- Mazur-Panasiuk, N., Żmudzki, J., Woźniakowski, G. (2019). African swine fever virus Persistence in different environmental conditions and the possibility of its indirect transmission. *Journal of Veterinary Research*. 63(3). 303–310. doi:10.2478/jvetres-2019-0058.
- Potop, T., Gurău, M.R., Negru, E., Beşleagă, S., Danes, D. (2024). PCR method and sanger sequencing for pB602L fragment detection in african swine fever virus strains isolated in Romania. Rev Rom Med Vet. 34(4):145-148.
- Saatkamp, H. W., Berentsen, P. B., Horst, H. S. (2000). Economic aspects of the control of classical swine fever outbreaks in the European Union. *Veterinary Microbiology*. 73(2-3). 221–237. doi:10.1016/s0378-1135(00)00147-4.

- Sánchez-Vizcaíno, J. M., Mur, L., Gomez-Villamandos, J. C., Carrasco, L. (2015). An update on the epidemiology and pathology of African swine fever. *Journal of Comparative Pathology*. 152(1). 9–21. doi:10.1016/j.jcpa.2014.09.003.
- Sánchez-Vizcaíno, J.M., Martínez-López, B., Martínez-Avilés, M., Martins, C., Boinas, F., Vial, L., Michaud, V., Jori, F., Etter, E., Albina, E., Roger. F. (2009). Scientific review on African swine fever. *EFSA Supporting Publication*. 6(8): EN-5. 1–141. doi:10.2903/sp.efsa.2009.EN-5.
- Sauter-Louis, C., Conraths, F. J., Probst, C., Blohm, U., Schulz, K., Sehl, J., Fischer, M., Forth, J. H., Zani, L., Depner, K., Mettenleiter, T. C., Beer, M., Blome, S. (2021). African swine fever in wild boar in Europe-A Review. *Viruses*. 13(9). 1717. doi:10.3390/v13091717.
- Turcitu, M.A. (2024). Universal workflow for pathogen detection using Real Time (RT)PCR. Romanian Journal of Veterinary Medicine & Pharmacology. 49(5): 276-287.
- World Organization for Animal Health (2019). *Terrestrial Animal Health Code*. OIE. Paris.