THE PRESENCE OF OCHRATOXINS IN FOODERS AND FOOD PRODUCTS AND THEIR IMPACT ON ANIMALS AND HUMAN HEALTH

Catalina Posea¹, A. Şonea², A. Bîrțoiu², Monica Roman³, Mihaela Vasile¹, Camelia Ion¹

¹PhD students University of Agricultural Sciences and Veterinary Medicine Bucharest (UASVMB); Address: Marasti Bvd 59, sector 1, Bucharest; Tel: +4 0724 764 764
²Faculty of Veterinary Medicine Bucharest, Address – 050097-Bucharest, Splaiul Independenței, 105,
³Sanitary - Veterinary and Food Safety- Brasov, Address- Brasov, Feldioarei,20A

Corresponding author: catalinaposea@yahoo.com

Abstract

Species of fungi: Aspergillus and Penicillium can produce and release, in certain circumstances of temperature, pH and humidity, secondary metabolites in fooders and food products type: Ochratoxins.
Toxicity of Ochratoxin depens on the type (A,B,C), source and their dose, duration of exposure. Up to the present time has been demonstrated nephrotoxic compounds, hepatotoxic and teratogenic effect. of OchratoxinA (OTA)
Due to the toxic effect of OTA the maximum level in fooder and food is subject to European legislation (Reg. CE N0 576/2006, Reg. CE 1881/2006)
The aim of the paper is to highlight the value of mycotoxins type OTA in feed and foods, as an possible risk on animals and human health. The working method used for testing was ELISA. Values obtained from determinations were performed according to the legislation.

Key words: mycotoxins, OTA, animals health, human health

INTRODUCTION

Mycotoxins, defined as "metabolites of fungi which, after ingestion inhalation or absorption through the skin, alter the ability of the body's reaction and cause illnesses or even death in animals" (Pit JI,1996).
Once ingested they may lead to reduced performance and to change the metabolism of animals. Diseases that occur as a result of consumption of feed contaminated with mycotoxins are called micotoxicicoze. They are negative: ingestion of feed; performance and changing metabolism of animals. The appearance of frequent and various forms of infecunditate is caused largely by the quality assurance of.
Contamination of agricultural products occur mainly during storage, being conditioned by the humidity and high temperatures. These factors favour the reproduction of fungi, leading to increased risk of mycotoxins. (Savu et al., 2004).

Due to the effects on human health and animal productivity and higher economic losses that occur in the world, special attention is paid to these mycotoxins.

Increasing control over mycotoxins contamination is due to numerous alerts on food: cereals, coffee, dried fruit (Bayman P, Baker J – 2006)

Species of fungi: *Aspergillus, Penicillium* generally develop after harvest and are called "mycotoxins of deposit". They can develop and release in feedingstuffs in certain circumstances secondary metabolites: Ochratoxin A (OTA) (Larsen et al., 2001; Pfohl-Leszkowicz et al., 2007).

These are:

In the genus *Penicillium*:
- *P. verrucosum*
- *P. nordicum*

In the genus *Aspergillus*:
- *A. ochraceus*
- *A. melleus*
- *A. auricomus*
- *A. ostianus*
- *A. petrakii,*
- *A. sclerotiorum*
- *A. sulfuroase*

In recent years the analyses of some food products and fodder demonstrated that, *P. viridicatum*, *P. griseofulvum* and possibly *P. solitum* also produced ochratoxins. From the genus *Aspergillus: A niger* and *A. carbonarius* have been reported as ochratoxigenic fungi (Pitt, J.I., 1987; Abarca ML et al., 2001; National Library of Medicine, 2002).

Affects both animal health, Ochratoxin and productive activity and can be matched in animal products such as meat, eggs, milk, presenting a potential risk for human health (Won-Bo Shim et al., 2004).

status of immune system, leading to reduced

In recent years due to its special form on the body human, animal and ochratoxinele are intensely studied. Depending on the degree and impact of health they may be divided into:

- Nephrotoxic
- Immunotoxic
- Neurotoxic
- Mielotoxice
- Carcinogens (IARC, 1993).
As a result of research carried out recently, you can pull up a stark signal of alarm that fungi pose for animal health and human health.

OTA- Toxicity in animals and in humans

OTA has cancerigena, genotoxica and mutagena to several species of animals and humans. Ochratoxin is primarily a toxin that affects the kidneys, but, if the concentration is high enough and injuries can occur in the liver(Rutqvist L. Et al. 1978; O’Brien E, Dietrich DR, 2005).

By inhibiting the metabolism of glucose and insulin, OTA may cause the accumulation of glycogen in the liver. Neurotoxic effect was demonstrated in all mammalian species.

Main mechanisms by which manifests its toxicity mycotoxins are: stimulation of lipid peroxidation, apoptosis and inhibition of protein synthesis of DNA and RNA. In this respect immunotoxicity is the most important consequence of serious micotoxicozei (Bondy and Pestka, 2000).

Nefrotoxicitatea in pigs fed with feedingstuffs, at which the level of OTA has been comprised between 200-4000 g/kg, is manifested in the kidney, proximal tubular atrophy, fibrosis and glomerular sclerosis(Stefanovic, V. et al.,1991). Intoxicati pigs appear biochemical lesions: proteinuria, sugar, enzimurie, reducing the concentration of the urine. Later onset kidney failure (Petrova- BacharovaT et al., 1991; Pföhl-Leszkowicz et al.,2002)

Human epidemiological studies have shown that OTA can cause a higher incident of renal tumors, described for the first time in Bulgaria in the year 1956 (Tanchev Y.Dorossiev D -1956).

That is way the European Scientific Committee on Food indicates a lower tolerable intake, below 5 ng/kg /per day (Walker, R.; Larsen, J.C, 2005).

Carcinogeneza

In rodents, after ingesting food contaminated with OTA were detected in liver, kidney tumors, Mammary and testicular (IARC, 1993; Castegnaro, M. ,et al.,1998; Mantle, P.,et al.,2005)

Following administration of OTA in growing gilts over a period of 35 days found decreased phagocytic macrophages. Also the production of interleukin (IL) is compromised. (Harvey et al., 1992; Petzinger, E., Weidenbach, A. Mycotoxins,2002).

In the studies done have shown the effects of immunomodulation induced by ochratoxin, and the fact that OTA affects humoral immunity (antibody synthesis) in chickens, rats and mice (Surai, 2004).

Purified human lymphocytes after exposure to OTA has been a decrease in cellular capacity aspunde activation stimuli in vitro, is impaired production of IL-2 and IL-2 receptor by T cells activated. (Lea et al., 1989)The conclusion was that the toxin
led to immunosuppression by interfering with essential processes of cellular metabolism.
Inhibition of interferon production base has Locle after suppression of NK cell activity by OTA (Lea et al., 1989).
The man behind the studies conducted have found that kidney tumors often appear when food intake is greater than 70 g/kg per day of OTA (Pfohl-Leszkowicz, A et al., 1993; Pfohl-Leszkowicz, A et al. 2007; Pfohl-Leszkowicz, A, 2009).

MATERIAL AND METHODS

We used the test kit with competitive enzyme immunoassay for the quantitative analysis of *Ochratoxin A (OTA)* in fodder and foods.
The determination is made based on working kit protocol used is based on the reaction of antigen - antibody. ELISA kit (Enzyme-linked immunosorbent assay-enzyme immunoassay, or EIA). After the sample preparation the test procedure, the measurement is made photometrical at 450 nm.
Reagents: - 1n HCl; 5 n HCl; CH₂Cl₂; 0,13M buffer (NaHCO₃) with pH=8,1
Equipment: - microtiter plate spectrophotometer (450nm)
- centrifuge
- magnetic stirrer
- paper filter
- gradual pipettes
- micropipettes
- purification columns OTA

All reagents required for determinations had adequate quality according and the determinations were made using modern equipment from Sanitary- Veterinary and Food Safety Direction-laboratory of Brasov. This laboratory applies a GPL system and a quality system.
To avoid contamination of samples was taken into account the observance of rules, namely:
-when entering the laboratory, samples were pureed ;
-it was a laboratory sample is stored in the freezer representative until determination;
To obtain valid results has been considered subject to the following precautions:
-all reagents were brought to temperature 20-25 ° C and were mixed before use ;
-these steps were imposed by the kit work in compliance with time forced ;
-to work in the solvent extract preparation - 70% methanol (OTA);
- were observed using working volumes: 50, 100, 500 and 1000 μl-micropipets;
All kits must be certified according: detection limit (LOD), recovery rate, sample preparation and specificity (Table 1).
Table 1. Performance criteria for ELISA kit

<table>
<thead>
<tr>
<th>Mycotoxin</th>
<th>Recovery %</th>
<th>LOD</th>
<th>Matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ochratoxin A</td>
<td>85</td>
<td>625 ppt*</td>
<td>Cereals, feed, food</td>
</tr>
<tr>
<td>\textit{RidaScreen}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*(ppb= ng/mL= μg/Kg ; ppt = ng/Kg)

RESULTS AND DISCUSSION

The present report refers to the determinations made in 2010-2012 on samples from farms, processing units, markets designated booth for animal feed and human food (cereals, wine, peanuts, etc).

The sample were representative of each batch separately and have respected the rules of collection.

The maximum level of \textit{Ochratoxin A} in different types of products are indicate in following table 2:

Table 2. The maximum levels for OTA according to Europeans legislature

<table>
<thead>
<tr>
<th>Mycotoxin type</th>
<th>Level</th>
<th>Products</th>
<th>Directive EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ochratoxin A</td>
<td>3,0 – 10,0 (ppb)</td>
<td>Cereals, peanuts, dry fruits, coffee</td>
<td>Regulation (EC) No 1881/2006</td>
</tr>
<tr>
<td></td>
<td>2,0 (ppb)</td>
<td>Wine, juice of wine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,50 (ppb)</td>
<td>Baby foods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,05 – 0,25 (ppm)</td>
<td>Types of fodders</td>
<td>Regulation (EC) No 576/2006</td>
</tr>
</tbody>
</table>

Regarding the values of Ochratoxin A in the sample which we analysed are presented in the table below (Table nr.3).

Table 3. The values of OTA in same samples

<table>
<thead>
<tr>
<th>Analysed sample</th>
<th>The variation of values for OTA (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>2010: 0,00 – 3,200</td>
</tr>
<tr>
<td>Foods</td>
<td>0,00 – 0,120</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Fodder</td>
<td>0,00 - 8,760</td>
</tr>
</tbody>
</table>

Values obtained from determinations were performed according to the European legislation: Regulation (EC) No 576/2006 and Regulation (EC) No 1881/2006

CONCLUSIONS

The Ochratoxin A is one of the highly dangerous mycotoxins for human and animal health
The obtained results were reported to be tantamount to the laws regarding the levels of Ochratoxin A.
Since the values obtained from analyses did not exceed the maximum level permitted by law, these samples are not harmful to humans and animals.

ACKNOWLEDGEMENTS:

This study is part of the doctoral dissertation included in the project: "doctoral Fellowships to support research activity in the field of agronomic and veterinary medicine" in the POSDRU/107/5/S/76888

REFERENCES

Muzafffer Denli and Jose F. Perez “Ochratoxins in Feed, a Risk for Animal and Human Health: Control Strategies” Toxins 2010, 2, 1065-1077;

Surai P și Dvoska Iulia - 2005 Micotoxinele, sistemul imun si sistemul antioxidiant. Interactiuni, Turnelul european de conferinte Alltrch pe probleme de micotoxine, 7 feb. 5 martie 2005.
Won-Bo Shim1, Anna Yu. Kolosoval1,2*, Yoon-Jung Kim1, Zheng-You Yang1, Seon-Ja Park1, Sergei A. Eremin2, In-Seon Lee3 & Duck-Hwa Chung1 (2004)- Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of ochratoxin A. International Journal of Food Science and Technology 39, 829-837
REGULATION (EC) NO. 1881/2006 COMMISSION of December 19, 2006 setting maximum levels for certain contaminants in foodstuffs.
Test kit, OTA - ELISA method, RIDASCREEN, Catalog # R1311.